Response to the Formal Letter of Z. Chrzanowska-Lightowlers and R. N. Lightowlers Regarding Our Article “Ribosome Rescue and Translation Termination at Non-Standard Stop Codons by ICT1 in Mammalian Mitochondria”
نویسندگان
چکیده
Most deviations from the universal genetic code exist in the mitochondrial translation system. In human mitochondria, two arginine codons, AGA and AGG, have no cognate tRNAs; mtDNA-encoded cytochrome c oxidase subunit I (MTCO1) and NADH dehydrogenase 6 (MTND6) carry AGA and AGG codons at the end of their mRNAs, respectively. We previously demonstrated in vitro the possible engagement of ICT1 in the translation termination at nonstandard stop codons ofMTCOI andMTND6mRNAs. On the other hand, Temperley and colleagues proposed in 2010 that human mitoribosomes invoke a -1 frameshift at the terminal AGA/AGG codons placing standard UAG stop codon in the ribosomal A-site. As consequence, only a single release factor, mtRF1a/RF1Lmt, would be used in mitochondria. Here we revisit the frameshift model and explain the view that ICT1 is presently a plausible candidate for the termination factor for non-standard stop codon in human mitochondria.
منابع مشابه
Response to “Ribosome Rescue and Translation Termination at Non-standard Stop Codons by ICT1 in Mammalian Mitochondria”
Release factors (RFs) govern the termination phase of protein synthesis. Human mitochondria harbor four different members of the class 1 RF family: RF1Lmt/mtRF1a, RF1mt, C12orf65 and ICT1. The homolog of the essential ICT1 factor is widely distributed in bacteria and organelles and has the peculiar feature in human mitochondria to be part of the ribosome as a ribosomal protein of the large subu...
متن کاملHow do mammalian mitochondria synthesize proteins?
Mitochondria contain their own genome that is expressed by nuclear-encoded factors imported into the organelle. This review provides a summary of the current state of knowledge regarding the mechanism of protein translation in human mitochondria and the factors involved in this process.
متن کاملmtRF1a Is a Human Mitochondrial Translation Release Factor Decoding the Major Termination Codons UAA and UAG
Human mitochondria contain their own genome, encoding 13 polypeptides that are synthesized within the organelle. The molecular processes that govern and facilitate this mitochondrial translation remain unclear. Many key factors have yet to be characterized-for example, those required for translation termination. All other systems have two classes of release factors that either promote codon-spe...
متن کاملTranslation termination in human mitochondrial ribosomes.
Mitochondria are ubiquitous and essential organelles for all nucleated cells of higher eukaryotes. They contain their own genome [mtDNA (mitochondrial DNA)], and this autosomally replicating extranuclear DNA encodes a complement of genes whose products are required to couple oxidative phosphorylation. Sequencing of this human mtDNA more than 20 years ago revealed unusual features that included ...
متن کاملA functional peptidyl-tRNA hydrolase, ICT1, has been recruited into the human mitochondrial ribosome
Bioinformatic analysis classifies the human protein encoded by immature colon carcinoma transcript-1 (ICT1) as one of a family of four putative mitochondrial translation release factors. However, this has not been supported by any experimental evidence. As only a single member of this family, mtRF1a, is required to terminate the synthesis of all 13 mitochondrially encoded polypeptides, the true...
متن کامل